The Snf1 Protein Kinase Controls the Induction of Genes of the Iron Uptake Pathway at the Diauxic Shift in Saccharomyces cerevisiae

In Saccharomyces cerevisiae the transition between the fermentative and the oxidative metabolism, called the diauxic shift, is associated with major changes in gene expression. In this study, we characterized a novel family of five genes whose expression is induced during the diauxic shift. These ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-11, Vol.278 (46), p.45391-45396
Hauptverfasser: Haurie, Valérie, Boucherie, Hélian, Sagliocco, Francis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Saccharomyces cerevisiae the transition between the fermentative and the oxidative metabolism, called the diauxic shift, is associated with major changes in gene expression. In this study, we characterized a novel family of five genes whose expression is induced during the diauxic shift. These genes, FET3, FTR1, TIS11, SIT1, and FIT2, are involved in the iron uptake pathway. We showed that their induction at the diauxic shift is positively controlled by the Snf1/Snf4 kinase pathway. The transcriptional factor Aft1p, which is known to control their induction in response to iron limitation, is also required for their induction during the diauxic shift. The increase of the extracellular iron concentration does not affect this induction, indicating that glucose exhaustion by itself would be the signal. The possibility that the Snf1/Snf4 pathway was also involved in the induction of the same set of genes in response to iron starvation was considered. We demonstrate here that this is not the case. Thus, the two signals, glucose exhaustion and iron starvation, use two independent pathways to activate the same set of genes through the Aft1p transcriptional factor.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M307447200