Sequencing and amplified restriction fragment length polymorphism analysis of ribonucleotide reductase large subunit gene of the white spot syndrome virus in blue crab (Callinectes sapidus) from American Coastal Waters

In the present study, the existence of white spot syndrome virus (WSSV) in blue crab (Callinectes sapidus) collected from 3 different American coastal waters (New York, New Jersey, and Texas) was confirmed by 2-step diagnostic polymerase chain reaction and in situ hybridization analysis. When geogra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine biotechnology (New York, N.Y.) N.Y.), 2001-03, Vol.3 (2), p.163-171
Hauptverfasser: Chang, Y S, Peng, S E, Wang, H C, Hsu, H C, Ho, C H, Wang, C H, Wang, S Y, Lo, C F, Kou, G H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, the existence of white spot syndrome virus (WSSV) in blue crab (Callinectes sapidus) collected from 3 different American coastal waters (New York, New Jersey, and Texas) was confirmed by 2-step diagnostic polymerase chain reaction and in situ hybridization analysis. When geographic isolates were also compared using a gene that encodes the WSSV ribonucleotide reductase large subunit RR1 (WSSV rr1), a C(1661)-to-T point mutation was found in the New Jersey WSSV isolated. This point mutation, which resulted in the creation of an additional RsaI endonuclease recognition site, was not found in the WSSV from the New York and Texas blue crab samples, or in the WSSV Taiwan isolate, or in any of the other WSSV geographical isolates for which data are available. WSSV rr1-specific RsaI amplified restriction fragment length polymorphism of an amplified 1156-bp fragment thus distinguished the New Jersey blue crab samples from the other WSSV isolates.
ISSN:1436-2228
1436-2236
DOI:10.1007/s101260000058