Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide
There is increasing evidence for biological functions of human C-peptide. Recently, we have described that proinsulin C-peptide increases nutritive capillary blood flow and restores erythrocyte deformability in type 1 diabetic patients, whereas it has no such effect in non-diabetic subjects. The aim...
Gespeichert in:
Veröffentlicht in: | Nitric oxide 2003-09, Vol.9 (2), p.95-102 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is increasing evidence for biological functions of human C-peptide. Recently, we have described that proinsulin C-peptide increases nutritive capillary blood flow and restores erythrocyte deformability in type 1 diabetic patients, whereas it has no such effect in non-diabetic subjects. The aim of the current study was to elucidate cellular mechanisms of this vasodilator effect in vitro by measuring the nitric oxide (NO)-mediated increase of cGMP production in a RFL-6 reporter cell assay and by demonstrating endothelial calcium influx with the Fluo-3 technique. C-peptide increased the release of NO from endothelial NO synthase (eNOS) in bovine aortic endothelial cells in a concentration- and time-dependent manner. At physiological concentrations of C-peptide, endothelial NO production was more than doubled (208
±
12% vs control;
p |
---|---|
ISSN: | 1089-8603 1089-8611 |
DOI: | 10.1016/j.niox.2003.08.004 |