Phylogenetic analysis of hemagglutinin and neuraminidase genes of H9N2 viruses isolated from migratory ducks

Genetic analysis indicated that the pandemic influenza strains derived from wild aquatic birds harbor viruses of 15 hemagglutinin (HA) and 9 neuraminidase (NA) antigenic subtypes. Surveillance studies have shown that H9N2 subtype viruses are worldwide in domestic poultry and could infect mammalian s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virus genes 2003-12, Vol.27 (3), p.291-296
Hauptverfasser: Liu, Jin-Hua, Okazaki, Katsunori, Shi, Wei-Min, Kida, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genetic analysis indicated that the pandemic influenza strains derived from wild aquatic birds harbor viruses of 15 hemagglutinin (HA) and 9 neuraminidase (NA) antigenic subtypes. Surveillance studies have shown that H9N2 subtype viruses are worldwide in domestic poultry and could infect mammalian species, including humans. Here, we genetically analyzed the HA and NA genes of five H9N2 viruses isolated from the migratory ducks in Hokkaido, Japan, the flyway of migration from Siberia during 1997-2000. The results showed that HA and NA genes of these viruses belong to the same lineages, respectively. Compared with those of A/quail/Hong Kong/G1/97-like and A/duck/Hong Kong/Y280/97-like viruses, HA and NA of the migratory duck isolates had a close relationship with those of H9N2 viruses isolated from the chicken in Korea, indicating that the Korea H9N2 viruses might be derived from the migratory ducks. The NA genes of the five isolates were located in the same cluster as those of N2 viruses, which had caused a human pandemic in 1968, indicating that the NA genes of the previous pandemic strains are still circulating in waterfowl reservoirs. The present results further emphasize the importance of carrying out molecular epidemiological surveillance of H9N2 viruses in wild ducks to obtain more information for the future human influenza pandemics preparedness.
ISSN:0920-8569
1572-994X
DOI:10.1023/A:1026304117797