Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm
For a practical quantum computer to operate, it is essential to properly manage decoherence. One important technique for doing this is the use of "decoherence-free subspaces" (DFSs), which have recently been demonstrated. Here we present the first use of DFSs to improve the performance of...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2003-10, Vol.91 (18), p.187903-187903, Article 187903 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a practical quantum computer to operate, it is essential to properly manage decoherence. One important technique for doing this is the use of "decoherence-free subspaces" (DFSs), which have recently been demonstrated. Here we present the first use of DFSs to improve the performance of a quantum algorithm. An optical implementation of the Deutsch-Jozsa algorithm can be made insensitive to a particular class of phase noise by encoding information in the appropriate subspaces; we observe a reduction of the error rate from 35% to 7%, essentially its value in the absence of noise. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.91.187903 |