Extraction of protein interaction information from unstructured text using a context-free grammar
Motivation: As research into disease pathology and cellular function continues to generate vast amounts of data pertaining to protein, gene and small molecule (PGSM) interactions, there exists a critical need to capture these results in structured formats allowing for computational analysis. Althoug...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2003-11, Vol.19 (16), p.2046-2053 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivation: As research into disease pathology and cellular function continues to generate vast amounts of data pertaining to protein, gene and small molecule (PGSM) interactions, there exists a critical need to capture these results in structured formats allowing for computational analysis. Although many efforts have been made to create databases that store this information in computer readable form, populating these sources largely requires a manual process of interpreting and extracting interaction relationships from the biological research literature. Being able to efficiently and accurately automate the extraction of interactions from unstructured text, would greatly improve the content of these databases and provide a method for managing the continued growth of new literature being published. Results: In this paper, we describe a system for extracting PGSM interactions from unstructured text. By utilizing a lexical analyzer and context free grammar (CFG), we demonstrate that efficient parsers can be constructed for extracting these relationships from natural language with high rates of recall and precision. Our results show that this technique achieved a recall rate of 83.5% and a precision rate of 93.1% for recognizing PGSM names and a recall rate of 63.9% and a precision rate of 70.2% for extracting interactions between these entities. In contrast to other published techniques, the use of a CFG significantly reduces the complexities of natural language processing by focusing on domain specific structure as opposed to analyzing the semantics of a given language. Additionally, our approach provides a level of abstraction for adding new rules for extracting other types of biological relationships beyond PGSM relationships. Availability: The program and corpus are available by request from the authors. |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/btg279 |