Fractal Weyl laws for chaotic open systems
We present a conjecture relating the density of quantum resonances for an open chaotic system to the fractal dimension of the associated classical repeller. Mathematical arguments justifying this conjecture are discussed. Numerical evidence based on computation of resonances of systems of n disks on...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2003-10, Vol.91 (15), p.154101-154101, Article 154101 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a conjecture relating the density of quantum resonances for an open chaotic system to the fractal dimension of the associated classical repeller. Mathematical arguments justifying this conjecture are discussed. Numerical evidence based on computation of resonances of systems of n disks on a plane are presented supporting this conjecture. The result generalizes the Weyl law for the density of states of a closed system to chaotic open systems. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.91.154101 |