The beta -hairpin motif of UvrB is essential for DNA binding, damage processing, and UvrC-mediated incisions
UvrB plays a major role in recognition and processing of DNA lesions during nucleotide excision repair. The crystal structure of UvrB revealed a similar fold as found in monomeric DNA helicases. Homology modeling suggested that the beta-hairpin motif of UvrB might be involved in DNA binding (Theis,...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2002-01, Vol.277 (2), p.1553-1559 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | UvrB plays a major role in recognition and processing of DNA lesions during nucleotide excision repair. The crystal structure of UvrB revealed a similar fold as found in monomeric DNA helicases. Homology modeling suggested that the beta-hairpin motif of UvrB might be involved in DNA binding (Theis, K., Chen, P. J., Skorvaga, M., Van Houten, B., and Kisker, C. (1999) EMBO J. 18, 6899-6907). To determine a role of the beta-hairpin of Bacillus caldotenax UvrB, we have constructed a deletion mutant, Deltabetah UvrB, which lacks residues Gln-97-Asp-112 of the beta-hairpin. Deltabetah UvrB does not form a stable UvrB-DNA pre-incision complex and is inactive in UvrABC-mediated incision. However, Deltabetah UvrB is able to bind to UvrA and form a complex with UvrA and damaged DNA, competing with wild type UvrB. In addition, Deltabetah UvrB shows wild type-like ATPase activity in complex with UvrA that is stimulated by damaged DNA. In contrast to wild type UvrB, the ATPase activity of mutant UvrB does not lead to a destabilization of the damaged duplex. These results indicate that the conserved beta-hairpin motif is a major factor in DNA binding. |
---|---|
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.M108847200 |