Leptin regulation of reproductive function and fertility

Leptin, a 16-KD protein secreted primarily by adipose tissue, was first discovered in the search for a satiety signal. When administered into the brain, leptin depresses appetite. Interestingly, hyperphagic, obese, transgenic mice with leptin deficiency were noted to be reproductively incompetent, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theriogenology 2002, Vol.57 (1), p.73-86
Hauptverfasser: Smith, G.D., Jackson, L.M., Foster, D.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Leptin, a 16-KD protein secreted primarily by adipose tissue, was first discovered in the search for a satiety signal. When administered into the brain, leptin depresses appetite. Interestingly, hyperphagic, obese, transgenic mice with leptin deficiency were noted to be reproductively incompetent, and administration of leptin restored their fertility. These pivotal observations led to numerous studies on the site of action of leptin within the hypothalamo-hypophyseal-gonadal axis, and a variety of models have been used ranging from the prepubertal condition to fasting suppression of reproductive hormones. The prepoderance of studies thus far has focused on how leptin serves as a metabolic signal of energy balance within the neuroendocrine system, particularly as a regulator of GnRH/LH secretion. Less research has been conducted with other components of the reproductive system, but local effects of leptin have been demonstrated in the gonads where hyperleptinemia suppresses steroidogenesis and potentially affects gamete maturation. This presentation will review the major concepts for the role of leptin in the modulation of fertility and will consider the potential use of leptin in assisted reproductive technology and embryo transfer.
ISSN:0093-691X
1879-3231
DOI:10.1016/S0093-691X(01)00658-6