NHERF-1 is required for renal adaptation to a low-phosphate diet

The sodium-dependent renal phosphate transporter (Npt2, Na-Pi IIa) is the major regulated phosphate transporter in the renal proximal convoluted tubule. Npt2 associates with a number of PDZ-containing proteins including Na+H+ exchanger regulatory factor-1 (NHERF-1). To determine whether NHERF-1 is i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal physiology 2003-12, Vol.285 (6), p.F1225-F1232
Hauptverfasser: Weinman, Edward J, Boddeti, Anuradha, Cunningham, Rochelle, Akom, Michael, Wang, Fengying, Wang, Yu, Liu, Jie, Steplock, Deborah, Shenolikar, Shirish, Wade, James B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sodium-dependent renal phosphate transporter (Npt2, Na-Pi IIa) is the major regulated phosphate transporter in the renal proximal convoluted tubule. Npt2 associates with a number of PDZ-containing proteins including Na+H+ exchanger regulatory factor-1 (NHERF-1). To determine whether NHERF-1 is involved in the acute regulation of phosphate transport, wild-type and NHERF-1 (-/-) mice were stabilized on a high-phosphate diet and then acutely changed to a low-phosphate diet. At 24 h after the change to a low-phosphate diet, there was a significant decrease in the urinary excretion of phosphate in both groups but the urinary excretion of phosphate in NHERF-1 (-/-) mice was significantly higher than in wild-type animals (1,097 +/- 356 vs. 255 +/- 54 ng/min, P < 0.05). Renal mRNA levels and total cellular Npt2 protein did not differ between the animal groups or in response to the changes in diet. Renal brush-border membrane (BBM) expression of Npt2 protein, however, was lower in NHERF-1 (-/-) mice compared with wild-type. In addition, with both the high- and low-phosphate diets, there was increased detection of Npt2 in submicrovillar domains that were particularly prominent in NHERF-1 (-/-) mice compared with wild-type animals. On the other hand, a change from a low-phosphate diet to a high-phosphate diet was associated with a similar increase in the urinary excretion of phosphate in wild-type and NHERF-1 (-/-) animals. These experiments demonstrate that full renal adaptation to a low-phosphate diet requires NHERF-1, which serves to increase BBM expression of Npt2.
ISSN:1931-857X
1522-1466
DOI:10.1152/ajprenal.00215.2003