RGC-32 Increases p34CDC2 Kinase Activity and Entry of Aortic Smooth Muscle Cells into S-phase
Proliferation of aortic smooth muscle cells contributes to atherogenesis and neointima formation. Sublytic activation of complement, particularly C5b-9, induces cell cycle progression in aortic smooth muscle cells. RGC-32 is a novel protein that may promote cell cycle progression in response to comp...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2002-01, Vol.277 (1), p.502-508 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Proliferation of aortic smooth muscle cells contributes to atherogenesis and neointima formation. Sublytic activation of complement, particularly C5b-9, induces cell cycle progression in aortic smooth muscle cells. RGC-32 is a novel protein that may promote cell cycle progression in response to complement activation. We cloned human RGC-32 cDNA from a human fetal brain cDNA library. The human RGC-32cDNA encodes a 117-amino acid protein with 92% similarity to the rat and mouse protein. Human RGC-32 maps to chromosome 13 and is expressed in most tissues. Sublytic complement activation enhanced RGC-32 mRNA expression in human aortic smooth muscle cells and induced nuclear translocation of the protein. RGC-32 was physically associated with cyclin-dependent kinase p34CDC2 and increased the kinase activity in vivo and in vitro. In addition, RGC-32 was phosphorylated by p34CDC2-cyclin B1 in vitro.Mutation of RGC-32 protein at Thr-91 prevented the p34CDC2-mediated phosphorylation and resulted in loss of p34CDC2 kinase enhancing activity. Overexpression of RGC-32 induced quiescent aortic smooth muscle cells to enter S-phase. These data indicate that cell cycle activation by C5b-9 may involve p34CDC2 activity through RGC-32. RGC-32 appears to be a cell cycle regulatory factor that mediates cell proliferation, both as an activator and substrate of p34CDC2. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M109354200 |