BRCA2: a genetic risk factor for breast cancer

The identification of the breast cancer susceptibility genes BRCA1 and BRCA2 a few years ago has been greeted with great excitement and has raised hopes that they might illuminate the common mechanisms of this disease. Today we have to recognize that these expectations remain unfulfilled. Mutations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer Letters 2002-01, Vol.175 (1), p.1-8
Hauptverfasser: Schwab, Manfred, Claas, Andreas, Savelyeva, Larissa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The identification of the breast cancer susceptibility genes BRCA1 and BRCA2 a few years ago has been greeted with great excitement and has raised hopes that they might illuminate the common mechanisms of this disease. Today we have to recognize that these expectations remain unfulfilled. Mutations in BRCA1 and BRCA2 account only for a relatively small proportion of breast cancers, even within the group of familiar clusters, they seem to be virtually non-existing in sporadic breast cancers. A substantial proportion of familiar breast cancer clusters has failed to provide evidence for an association with mutations in either BRCA1 or BRCA2, thus we have to look forward to the identification of additional breast cancer susceptibility genes. What has been most disappointing is that the mutation status of BRCA1/2 can provide only limited information for cancer risk. Initial assessments had indicated a risk of close to 90% for mutation carriers to develop breast cancer until age 75 – a value that turned out to be restricted to high-risk families in which the BRCA1 and BRCA2 genes had been genomically mapped. In unselected clusters the risk appears much lower, some estimates suggest less than 40%. Both BRCA1 and BRCA2 large encode proteins that appear to have a plethora of functions, with a conspicuous association to DNA repair and DNA recombination, and probably transcription activation. Defects in DNA repair can result in cancer predisposition syndromes and are recognized as being instrumental in cancer progression. Central questions have remained unanswered: What is the function of damaged BRCA1 and BRCA2 genes in breast cancer risk? What is the basis of large variations of risk conferred to the patients by identical mutations? How can the predictive value of mutation surveys be increased?
ISSN:0304-3835
1872-7980
DOI:10.1016/S0304-3835(01)00752-2