Quantitative evaluation of the biocompatible and osteogenic properties of a range of biphasic calcium phosphate (BCP) granules using primary cultures of human osteoblasts and monocytes

A range of 50% porous gamma-sterilized biphasic calcium phosphate (BCP) granules, (20, 50, 80, and 100% tricalcium phosphate, TCP) were classified into two distinct size ranges, small 2-4 mm in diameter and large 4-6 mm in diameter, and their potential as bone graft extender materials was assessed i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calcified tissue international 2003-06, Vol.72 (6), p.726-736
Hauptverfasser: Rice, J M, Hunt, J A, Gallagher, J A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A range of 50% porous gamma-sterilized biphasic calcium phosphate (BCP) granules, (20, 50, 80, and 100% tricalcium phosphate, TCP) were classified into two distinct size ranges, small 2-4 mm in diameter and large 4-6 mm in diameter, and their potential as bone graft extender materials was assessed in vitro using culture systems of primary-derived peripheral human blood monocytes and human osteoblasts isolated from bone. The effect of the in vitro culture conditions was evaluated prior to the introduction of the test substrates. The cellular response was assessed via quantification of viable cell adhesion to the materials, lactate dehydrogenase (LDH), the production and release of interleukin-1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha), and prostaglandin E2 (PGE2). The higher content TCP materials, 80% and 100% TCP, had a detrimental effect on viable cell adhesion after day 1, which was not related to calcium release from the granules within the local environment. TCP granules (20% and 50%) initiated a controlled level of inflammatory response that sustained and promoted viable macrophage adhesion throughout the test period, The percentage of TCP within the BCP granules was a governing factor in determining the cellular response.
ISSN:0171-967X
1432-0827
DOI:10.1007/s00223-002-2045-y