L-edge X-ray Absorption Spectroscopy of Non-Heme Iron Sites:  Experimental Determination of Differential Orbital Covalency

X-ray absorption spectroscopy has been utilized to obtain the L-edge multiplet spectra for a series of non-heme ferric and ferrous complexes. Using these data, a methodology for determining the total covalency and the differential orbital covalency (DOC), that is, differences in covalency in the dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2003-10, Vol.125 (42), p.12894-12906
Hauptverfasser: Wasinger, Erik C, de Groot, Frank M. F, Hedman, Britt, Hodgson, Keith O, Solomon, Edward I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:X-ray absorption spectroscopy has been utilized to obtain the L-edge multiplet spectra for a series of non-heme ferric and ferrous complexes. Using these data, a methodology for determining the total covalency and the differential orbital covalency (DOC), that is, differences in covalency in the different symmetry sets of the d orbitals, has been developed. The integrated L-edge intensity is proportional to the number of one-electron transition pathways to the unoccupied molecular orbitals as well as to the covalency of the iron site, which reduces the total L-edge intensity and redistributes intensity, producing shake-up satellites. Furthermore, differential orbital covalency leads to differences in intensity for the different symmetry sets of orbitals and, thus, further modifies the experimental spectra. The ligand field multiplet model commonly used to simulate L-edge spectra does not adequately reproduce the spectral features, especially the charge transfer satellites. The inclusion of charge transfer states with differences in covalency gives excellent fits to the data and experimental estimates of the different contributions of charge transfer shake-up pathways to the t2g and eg symmetry orbitals. The resulting experimentally determined DOC is compared to values calculated from density functional theory and used to understand chemical trends in high- and low-spin ferrous and ferric complexes with different covalent environments. The utility of this method toward problems in bioinorganic chemistry is discussed.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja034634s