Diverse environmental cues transiently regulate OsOPR1 of the “octadecanoid pathway” revealing its importance in rice defense/stress and development

Previously, we reported rice ( Oryza sativa L. japonica type cv. Nipponbare) allene oxide synthase ( OsAOS) and cyclase ( OsAOC) genes of the octadecanoid pathway. Here we have isolated a 12-oxo-phytodienoic acid reductase gene, called OsOPR1, encoding the last committed enzymatic step on the octade...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2003-10, Vol.310 (4), p.1073-1082
Hauptverfasser: Agrawal, Ganesh K, Jwa, Nam-Soo, Shibato, Junko, Han, Oksoo, Iwahashi, Hitoshi, Rakwal, Randeep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previously, we reported rice ( Oryza sativa L. japonica type cv. Nipponbare) allene oxide synthase ( OsAOS) and cyclase ( OsAOC) genes of the octadecanoid pathway. Here we have isolated a 12-oxo-phytodienoic acid reductase gene, called OsOPR1, encoding the last committed enzymatic step on the octadecanoid pathway leading to jasmonic acid (JA) biosynthesis. OsOPR1 encodes a 380 amino acid long polypeptide with a predicted molecular mass of 42465.02 and p I of 5.79, and belongs to a gene family in the rice genome. Transcriptional profiling using our established two-week-old rice seedling model system against a variety of environmental factors such as wounding, global signals (including JA), osmotic stresses, heavy metals, UV-C irradiation, fungal elicitor, protein phosphatase inhibitors, and gaseous pollutants indicated that OsOPR1 transcript was rapidly, transiently and differentially up-regulated within 30 min in leaves. Surprisingly, co-application of signaling molecules JA, salicylate and ethylene, resulted in a massive accumulation of the OsOPR1 transcript at 30 min and remained elevated with time, a new observation. Furthermore, transient expression of OsOPR1, most likely regulated by a de novo synthesized negative trans-acting factor(s), was evidenced by the use of cycloheximide. Finally, the endogenous OsOPR1 expression varied with the stage of plant development. These results strongly suggest a regulatory role for OsOPR1 in rice plant defense/stress response pathway(s) and reproduction.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2003.09.123