Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect
Evidence accumulated over the past two decades has indicated that exposure of cell populations to ionizing radiation results in significant biological effects occurring in both the irradiated and nonirradiated cells in the population. This phenomenon, termed the ‘bystander response’, has been shown...
Gespeichert in:
Veröffentlicht in: | Oncogene 2003-10, Vol.22 (45), p.7050-7057 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Evidence accumulated over the past two decades has indicated that exposure of cell populations to ionizing radiation results in significant biological effects occurring in both the irradiated and nonirradiated cells in the population. This phenomenon, termed the ‘bystander response’, has been shown to occur both
in vitro
and
in vivo
and has been postulated to impact both the estimation of risks of exposure to low doses/low fluences of ionizing radiation and radiotherapy. Several mechanisms involving secreted soluble factors, oxidative metabolism and gap-junction intercellular communication have been proposed to regulate the radiation-induced bystander effect. Our current knowledge of the biochemical and molecular events involved in the latter two processes is reviewed in this article. |
---|---|
ISSN: | 0950-9232 1476-5594 |
DOI: | 10.1038/sj.onc.1206961 |