The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development

Differences in DNA methylation distinguish the maternal and paternal alleles of many imprinted genes. Allele-specific methylation that is inherited from the gametes and maintained throughout development has been proposed as a candidate imprinting mark. To determine how methylation is established in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2000-11, Vol.9 (19), p.2885-2894
Hauptverfasser: DAVIS, Tamara L, YANG, Grace J, MCCARREY, John R, BARTOLOMEI, Marisa S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Differences in DNA methylation distinguish the maternal and paternal alleles of many imprinted genes. Allele-specific methylation that is inherited from the gametes and maintained throughout development has been proposed as a candidate imprinting mark. To determine how methylation is established in the germline, we have analyzed the allelic methylation patterns of the maternally expressed, paternally methylated H19 gene during gametogenesis in the mouse embryo. We show here that both parental alleles are devoid of methylation in male and female mid-gestation embryonic germ cells, suggesting that methylation imprints are erased in the germ cells prior to this time. In addition, we demonstrate that the subsequent hypermethylation of the paternal and maternal alleles in the male germline occurs at different times. Although the paternal allele becomes hypermethylated during fetal stages, methylation of the maternal allele begins during perinatal stages and continues postnatally through the onset of meiosis. The differential acquisition of methylation on the parental H19 alleles during gametogenesis implies that the two unmethylated alleles can still be distinguished from each other. Thus, in the absence of DNA methylation, other epigenetic mechanism(s) appear to maintain parental identity at the H19 locus during male germ cell development.
ISSN:0964-6906
1460-2083
1460-2083
DOI:10.1093/hmg/9.19.2885