Oxidative Stress Increases Synthesis of Big Endothelin-1 by Activation of the Endothelin-1 Promoter

Modulation of the biosynthesis of the vasoconstrictor peptide endothelin-1 by oxygen-derived free radicals generated by xanthine oxidase or hydrogen peroxide was studied in cultured endothelial cells. Endothelin-1 metabolism was investigated at the level of endothelin-1 promoter, preproendothelin-1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular and cellular cardiology 2000-08, Vol.32 (8), p.1429-1437
Hauptverfasser: Kähler, Jan, Mendel, Sabine, Weckmüller, Jörn, Orzechowski, Hans-Dieter, Mittmann, Clemens, Köster, Ralf, Paul, Martin, Meinertz, Thomas, Münzel, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modulation of the biosynthesis of the vasoconstrictor peptide endothelin-1 by oxygen-derived free radicals generated by xanthine oxidase or hydrogen peroxide was studied in cultured endothelial cells. Endothelin-1 metabolism was investigated at the level of endothelin-1 promoter, preproendothelin-1 mRNA and intracellular big endothelin-1. Endothelin-1 mRNA, as characterized by Northern blotting, was increased both time- and dose-dependently by xanthine oxidase to up to 500% above baseline. Analysis of endothelin-1 promoter activity using a construct containing 1329 bp of the endothelin-1 promoter revealed that promoter activity was increased up to eight-fold by incubation with xanthine oxidase. Specificity was ascertained by co-incubation with superoxide dismutase and catalase leading to inhibition of the effect of xanthine oxidase. A significant contribution of nitric oxide was ruled out, since NOS III-mRNA transcription remained unchanged and l -NAME did not significantly alter endothelin-1 promoter activity. Synthesis of intracellular big endothelin-1 protein was increased dose-dependently by xanthine oxidase. Our results indicate that oxidative stress leads to increased endothelial synthesis of big endothelin-1, which is a previously unknown mechanism and may help to understand the detrimental association of increased oxidative stress and elevated endothelin-1 levels in pathophysiological conditions promoting atherosclerosis.
ISSN:0022-2828
1095-8584
DOI:10.1006/jmcc.2000.1178