Cardiotrophin-1 Phosphorylates Akt and BAD, and Prolongs Cell Survival via a PI3K-dependent Pathway in Cardiac Myocytes
Growth factors and cytokines trigger survival signaling in a wide variety of cell systems, including cardiac myocytes. Participation of the phosphatidylinositol 3-OH kinase (PI3K)/Akt pathway in survival signaling has already been described in some cell types, but its involvement in the survival of...
Gespeichert in:
Veröffentlicht in: | Journal of molecular and cellular cardiology 2000-08, Vol.32 (8), p.1385-1394 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Growth factors and cytokines trigger survival signaling in a wide variety of cell systems, including cardiac myocytes. Participation of the phosphatidylinositol 3-OH kinase (PI3K)/Akt pathway in survival signaling has already been described in some cell types, but its involvement in the survival of cardiac myocytes is as yet unknown. Recently, CT-1, an interleukin 6-related cytokine, was shown to have survival-promoting, anti-apoptotic effects on cultured cardiac myocytes. However, roles of PI3K-dependent pathways in this signaling have not been elucidated. In the present study, therefore, we examined the participation of the PI3K/Akt pathway in CT-1-induced, survival-promoting signaling in cultured ventricular myocytes. It was found that CT-1 phosphorylated and activated Akt, and the effect was blocked by the PI3K inhibitors LY294002 and wortmannin. CT-1 also phosphorylated the pro-apoptotic factor, BAD, and the BAD phosphorylation was inhibited by LY294002, suggesting that phosphorylation of BAD is one of the key events by which the PI3K/Akt pathway mediates CT-1-induced survival signaling. Further, CT-1 PI3K-dependently prolonged the survival of serum-starved ventricular myocytes by preventing apoptosis. In summary, our findings show that PI3K-dependent survival signals contribute to CT-1-mediated ventricular myocyte survival. In vivo, the death of ventricular myocytes leads to heart failure, and downregulation of survival signals and/or augmentation of pro-apoptotic signals are likely to be important components of disease processes. Thus, the extent to which CT-1 and the PI3K/Akt pathway mitigate such pathological processes, in vivo, is an important question for the future. |
---|---|
ISSN: | 0022-2828 1095-8584 |
DOI: | 10.1006/jmcc.2000.1177 |