Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons

The olfactory ensheathing cell (OEC) has attracted much interest recently because of its potential for transplantation-based therapy of CNS disease. Rat OECs are able to remyelinate demyelinated axons and support regeneration of damaged axons. Although OECs can be grown readily from the rat, a macro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain (London, England : 1878) England : 1878), 2000-08, Vol.123 (8), p.1581-1588
Hauptverfasser: Barnett, Susan C., Alexander, Claire L., Iwashita, Yasushi, Gilson, Jennifer M., Crowther, John, Clark, Louise, Dunn, Laurence T., Papanastassiou, Vakis, Kennedy, Peter G. E., Franklin, Robin J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The olfactory ensheathing cell (OEC) has attracted much interest recently because of its potential for transplantation-based therapy of CNS disease. Rat OECs are able to remyelinate demyelinated axons and support regeneration of damaged axons. Although OECs can be grown readily from the rat, a macrosmatic species, it has been uncertain whether it would be similarly straightforward to obtain these cells from the human, a microsmatic species with a relatively poorly developed olfactory system. In this study, we have identified a human OEC which shares many properties with its rat counterpart, including expression of the low-affinity nerve growth factor receptor (L-NGFr) and similar growth factor requirements. Purified populations of human OECs obtained by selection with L-NGFr antibodies have extremely high viability in tissue culture, and are capable of remyelinating persistently demyelinated CNS axons following transplantation into experimentally induced demyelinating lesions in the rat spinal cord. Thus, the human OEC represents an important new cell for the development of transplant therapy of CNS diseases.
ISSN:0006-8950
1460-2156
1460-2156
DOI:10.1093/brain/123.8.1581