CBP1 Associates with the Dictyostelium Cytoskeleton and Is Important for Normal Cell Aggregation under Certain Developmental Conditions

In cells of the eukaryotic microorganism Dictyostelium discoideum, at least eight small, four-EF-hand Ca2+-binding proteins of unknown function are expressed at specific times during development. One of these proteins, calcium-binding protein 1 (CBP1), first appears just prior to cell aggregation an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental cell research 2000-08, Vol.258 (2), p.298-309
Hauptverfasser: Dharamsi, Akil, Tessarolo, Diane, Coukell, Barrie, Pun, Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In cells of the eukaryotic microorganism Dictyostelium discoideum, at least eight small, four-EF-hand Ca2+-binding proteins of unknown function are expressed at specific times during development. One of these proteins, calcium-binding protein 1 (CBP1), first appears just prior to cell aggregation and then is present at relatively constant levels throughout development. To determine a role for CBP1 during development, the protein was used as bait in a yeast two-hybrid screen to reveal putative CBP1-interacting proteins. Two proteins identified in this screen were the actin-binding proteins, protovillin and EF-1α. Using an in vitro binding assay, both of these proteins were found to interact with CBP1 in the absence of Ca2+, but the interaction of CBP1 with EF-1α was increased substantially by Ca2+. CBP1 was also shown by fluorescence microscopy and by binding assays to associate with the actin cytoskeleton of Dictyostelium cells during development, and these interactions were partially Ca2+-dependent. cbpA-null cells grew normally, but under certain developmental conditions, cell aggregation was prolonged and irregular. This defect in aggregation appeared to be related to a general reduction in cell motility rather than to a decrease in the ability of the cells to respond to the chemoattractant cAMP. Together, these results suggest that CBP1 might function to help regulate the reorganization of the Dictyostelium actin cytoskeleton during cell aggregation.
ISSN:0014-4827
1090-2422
DOI:10.1006/excr.2000.4950