Bootstrap Confidence Intervals for Adaptive Cluster Sampling

Consider a collection of spatially clustered objects where the clusters are geographically rare. Of interest is estimation of the total number of objects on the site from a sample of plots of equal size. Under these spatial conditions, adaptive cluster sampling of plots is generally useful in improv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2000-06, Vol.56 (2), p.503-510
Hauptverfasser: Christman, Mary C., Pontius, Jeffrey S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider a collection of spatially clustered objects where the clusters are geographically rare. Of interest is estimation of the total number of objects on the site from a sample of plots of equal size. Under these spatial conditions, adaptive cluster sampling of plots is generally useful in improving efficiency in estimation over simple random sampling without replacement (SRSWOR). In adaptive cluster sampling, when a sampled plot meets some predefined condition, neighboring plots are added to the sample. When populations are rare and clustered, the usual unbiased estimators based on small samples are often highly skewed and discrete in distribution. Thus, confidence intervals based on asymptotic normal theory may not be appropriate. We investigated several nonparametric bootstrap methods for constructing confidence intervals under adaptive cluster sampling. To perform bootstrapping, we transformed the initial sample in order to include the information from the adaptive portion of the sample yet maintain a fixed sample size. In general, coverages of bootstrap percentile methods were closer to nominal coverage than the normal approximation.
ISSN:0006-341X
1541-0420
DOI:10.1111/j.0006-341X.2000.00503.x