Control of beta-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts
Regulation of beta-catenin degradation by intracellular components of the wnt pathway was reconstituted in cytoplasmic extracts of Xenopus eggs and embryos. The ubiquitin-dependent beta-catenin degradation in extracts displays a biochemical requirement for axin, GSK3, and APC. Axin dramatically acce...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2000-03, Vol.5 (3), p.523-532 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Regulation of beta-catenin degradation by intracellular components of the wnt pathway was reconstituted in cytoplasmic extracts of Xenopus eggs and embryos. The ubiquitin-dependent beta-catenin degradation in extracts displays a biochemical requirement for axin, GSK3, and APC. Axin dramatically accelerates while dishevelled inhibits beta-catenin turnover. Through another domain, dishevelled recruits GBP/Frat1 to the APC-axin-GSK3 complex. Our results confirm and extend models in which inhibition of GSK3 has two synergistic effects: (1) reduction of APC phosphorylation and loss of affinity for beta-catenin and (2) reduction of beta-catenin phosphorylation and consequent loss of its affinity for the SCF ubiquitin ligase complex. Dishevelled thus stabilizes beta-catenin, which can dissociate from the APC/axin complex and participate in transcriptional activation. |
---|---|
ISSN: | 1097-2765 |
DOI: | 10.1016/S1097-2765(00)80446-3 |