Immune-mediated destruction of transfected myocytes following DNA vaccination occurs via multiple mechanisms
The delivery of antigenic proteins in the context of a DNA vaccine leads to the intracellular synthesis of antigen and the induction of both humoral and cellular immune responses. Subsequent to immune activation, any transfected cell expressing the immunogenic protein should, by the rules of immunol...
Gespeichert in:
Veröffentlicht in: | Gene therapy 2001-09, Vol.8 (18), p.1395-1400 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The delivery of antigenic proteins in the context of a DNA vaccine leads to the intracellular synthesis of antigen and the induction of both humoral and cellular immune responses. Subsequent to immune activation, any transfected cell expressing the immunogenic protein should, by the rules of immunology, become a legitimate target for removal by immune-mediated mechanisms. Herein, we have used an indirect assay of myocyte integrity following intra-muscular (i.m.) delivery of a DNA vaccine, in mice with various immune deficiencies, to determine which immunological mechanisms may be involved in destruction of antigen-expressing cells. We demonstrate that destruction of antigen- expressing myocytes following i.m. injection of a DNA vaccine is dependent on major histocompatibility complex (MHC) class II restricted CD4+ T cell activation, but is not mediated solely by MHC I-restricted or perforin-mediated lysis and appears to have a component that is antibody-mediated. Although we studied myocytes, the results likely represent what happens to any transfected cell expressing a foreign antigen. This study underscores the ability of DNA vaccines at inducing antigen-specific immune responses that include a number of effector mechanisms. From the perspective of gene therapy, this study highlights the significance of immune activation when considering strategies where maintenance of therapeutic gene expression is desired. |
---|---|
ISSN: | 0969-7128 1476-5462 |
DOI: | 10.1038/sj.gt.3301534 |