Injury current modulates afterdepolarizations in single human ventricular cells

Injury current (I(injury)) and afterdepolarizations are thought to play an important role in arrhythmias that occur during acute ischemia. However, little is known about the effects of I(injury) on afterdepolarizations. The present study was designed to study the effect of I(injury) on afterdepolari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular research 2000-07, Vol.47 (1), p.124-132
Hauptverfasser: VERKERK, A. O, VELDKAMP, M. W, DE JONGE, N, WILDERS, R, VAN GINNEKEN, A. C. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Injury current (I(injury)) and afterdepolarizations are thought to play an important role in arrhythmias that occur during acute ischemia. However, little is known about the effects of I(injury) on afterdepolarizations. The present study was designed to study the effect of I(injury) on afterdepolarizations and action potentials in single human ventricular cells. The patch-clamp technique was used to record action potentials and to apply I(injury) to human ventricular cells. In these cells, early and delayed afterdepolarizations (EADs and DADs) were induced by 1 microM norepinephrine. I(injury) was simulated by coupling cells via a variable coupling resistance to a passive resistance circuit with a potential of 0, -20, or -40 mV, mimicking a depolarized ischemic region. At all potentials, I(injury) induced depolarization of the resting membrane potential and action potential shortening. Flowing from 0 mV, I(injury) induced EADs by itself and aggravated the EADs and DADs that were induced by norepinephrine. Flowing from -40 mV, I(injury) abolished the noradrenaline-induced EADs and DADs. Our results demonstrate that I(injury) may either prevent or promote the occurrence of afterdepolarizations in human ventricle. The latter holds if conduction is slowed to such an extent that it permits flow of current from depolarized ischemic cells at plateau level to cells in phase 3 or phase 4.
ISSN:0008-6363
1755-3245
DOI:10.1016/S0008-6363(00)00064-X