Isolation of Arabidopsis Mutants Lacking Components of Acquired Thermotolerance
Acquired thermotolerance is a complex physiological phenomenon that enables plants to survive normally lethal temperatures. This study characterizes the temperature sensitivity of Arabidopsis using a chlorophyll accumulation bioassay, describes a procedure for selection of acquired thermotolerance m...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2000-06, Vol.123 (2), p.575-587 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Acquired thermotolerance is a complex physiological phenomenon that enables plants to survive normally lethal temperatures. This study characterizes the temperature sensitivity of Arabidopsis using a chlorophyll accumulation bioassay, describes a procedure for selection of acquired thermotolerance mutants, and provides the physiological characterization of one mutant (AtTS02) isolated by this procedure. Exposure of etiolated Arabidopsis seedlings to 48°C or 50°C for 30 min blocks subsequent chlorophyll accumulation and is eventually lethal. Arabidopsis seedlings can be protected against the effects of a 50°C, 30-min challenge by a 4-h pre-incubation at 38°C. By the use of the milder challenge, 44°C for 30 min, and protective pretreatment, mutants lacking components of the acquired thermotolerance system were isolated. Putative mutants isolated by this procedure exhibited chlorophyll accumulation levels (our measure of acquired thermotolerance) ranging from 10% to 98% of control seedling levels following pre-incubation at 38°C and challenge at 50°C. The induction temperatures for maximum acquired thermotolerance prior to a high temperature challenge were the same in AtTS02 and RLD seedlings, although the absolute level of chlorophyll accumulation was reduced in the mutant. Genetic analysis showed that the loss of acquired thermotolerance in AtTS02 was a recessive trait. The pattern of proteins synthesized at 25°C and 38°C in the RLD and AtTS02 revealed the reduction in the level of a 27-kD heat shock protein in AtTS02. Genetic analysis showed that the reduction of this protein level was correlated with the acquired thermotolerance phenotype. |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.123.2.575 |