Molecular Identification and Characterization of Two Medium-chain Acyl-CoA Synthetases, MACS1 and the Sa Gene Product

In this study, we identified and characterized two murine cDNAs encoding medium-chain acyl-CoA synthetase (MACS). One, designated MACS1, is a novel protein and the other the product of the Sa gene (Sa protein), which is preferentially expressed in spontaneously hypertensive rats. Based on the murine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2001-09, Vol.276 (38), p.35961-35966
Hauptverfasser: Fujino, Takahiro, Takei, Yumiko A., Sone, Hideyuki, Ioka, Ryoichi X., Kamataki, Akihisa, Magoori, Kenta, Takahashi, Sadao, Sakai, Juro, Yamamoto, Tokuo T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we identified and characterized two murine cDNAs encoding medium-chain acyl-CoA synthetase (MACS). One, designated MACS1, is a novel protein and the other the product of the Sa gene (Sa protein), which is preferentially expressed in spontaneously hypertensive rats. Based on the murine MACS1 sequence, we also identified the location and organization of the human MACS1 gene, showing that the human MACS1 and Sa genes are located in the opposite transcriptional direction within a 150-kilobase region on chromosome 16p13.1. Murine MACS1 and Sa protein were overexpressed in COS cells, purified to homogeneity, and characterized. Among C4–C16 fatty acids, MACS1 preferentially utilizes octanoate, whereas isobutyrate is the most preferred fatty acid among C2–C6 fatty acids for Sa protein. Like Sa gene transcript, MACS1 mRNA was detected mainly in the liver and kidney. Subcellular fractionation revealed that both MACS1 and Sa protein are localized in the mitochondrial matrix. 14C-Fatty acid incorporation studies indicated that acyl-CoAs produced by MACS1 and Sa protein are utilized mainly for oxidation.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M106651200