Quantitative Analysis of Low-Field NMR Signals in the Time Domain

Two novel methods are described for direct quantitative analysis of NMR free induction decay (FID) signals. The methods use adaptations of the generalized rank annihilation method (GRAM) and the direct exponential curve resolution algorithm (DECRA). With FID-GRAM, the Hankel matrix of the sample sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2001-09, Vol.73 (17), p.4286-4294
Hauptverfasser: Nordon, Alison, Gemperline, Paul J, McGill, Colin A, Littlejohn, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two novel methods are described for direct quantitative analysis of NMR free induction decay (FID) signals. The methods use adaptations of the generalized rank annihilation method (GRAM) and the direct exponential curve resolution algorithm (DECRA). With FID-GRAM, the Hankel matrix of the sample signal is compared with that of a reference mixture to obtain quantitative data about the components. With FID-DECRA, a single-sample FID matrix is split into two matrices, allowing quantitative recovery of decay constants and the individual signals in the FID. Inaccurate results were obtained with FID-GRAM when there were differences between the frequency or transverse relaxation time of signals for the reference and test samples. This problem does not arise with FID-DECRA, because comparison with a reference signal is unnecessary. Application of FID-DECRA to 19F NMR data, which contained overlapping signals from three components, gave concentrations comparable to those derived from partial least squares (PLS) analysis of the Fourier transformed spectra. However, the main advantage of FID-DECRA was that accurate (
ISSN:0003-2700
1520-6882
DOI:10.1021/ac0102866