Unequal retinal and extra-retinal motion signals produce different perceived slants of moving surfaces

Eye movements introduce retinal motion to the image and so affect motion cues to depth. For instance, the slant of a plane moving at right-angles to the observer is specified by translation and a component of relative motion such as shear. To a close approximation, the translation disappears from th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vision research (Oxford) 2000-01, Vol.40 (14), p.1857-1868
Hauptverfasser: Freeman, T.C.A., Fowler, T.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Eye movements introduce retinal motion to the image and so affect motion cues to depth. For instance, the slant of a plane moving at right-angles to the observer is specified by translation and a component of relative motion such as shear. To a close approximation, the translation disappears from the image when the eye tracks the surface accurately with a pursuit eye movement. However, both translation and relative-motion components are needed to estimate slant accurately and unambiguously. During pursuit, therefore, an extra-retinal estimate of translation must be used by the observer to estimate surface slant. Extra-retinal and retinal estimates of translation speed are known to differ: a classic Aubert–Fleischl phenomenon was found for our stimuli. The decrease in perceived speed during pursuit predicts a corresponding increase in perceived slant when the eye tracks the surface. This was confirmed by comparing perceived slant in pursuit and eye-stationary conditions using slant-matching and slant-estimation techniques. Moreover, the increase in perceived slant could be quantified solely on the basis of the perceived-speed data. We found no evidence that relative-motion estimates change between the two eye-movement conditions. A final experiment showed that perceived slant decreases when a fixed retinal shear is viewed with increasing pursuit speed, as predicted by the model. The implication of the results for recovering metric depth estimates from motion-based cues is discussed.
ISSN:0042-6989
1878-5646
DOI:10.1016/S0042-6989(00)00045-6