Developmentally Regulated Changes in Glucosidase II Association with, and Carbohydrate Content of, the Protein Tyrosine Phosphatase CD45

Glucosidase II (GII) stably interacts with the external domain of CD45 in a carbohydrate-dependent manner. We have found that the association occurs in immature cells, but is significantly reduced in mature T cells. Using mannose-binding protein (MBP), in both FACS analysis and pull-down assays, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2001-10, Vol.167 (7), p.3829-3835
Hauptverfasser: Baldwin, Troy A, Ostergaard, Hanne L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glucosidase II (GII) stably interacts with the external domain of CD45 in a carbohydrate-dependent manner. We have found that the association occurs in immature cells, but is significantly reduced in mature T cells. Using mannose-binding protein (MBP), in both FACS analysis and pull-down assays, we find that MBP can specifically recognize cell surface CD45 from immature, but not mature T cells. Analysis of thymocytes reveals increased MBP binding and GII association with CD45 in double-positive thymocytes compared with either double-negative or single-positive thymocytes. As well, the same pool of CD45 recognized by MBP can also associate with GII. Initial analysis of the basis of the interaction between CD45 and MBP suggests MBP binds two different glycoforms of CD45 based on the differential competition with glucose. Finally, inhibition of GII activity in cells that do not normally express MBP ligands results in significant increases in cell surface MBP ligands, including CD45. Taken together, these data suggest that the glucose content of the cell surface CD45 changes as thymocytes undergo maturation to mature T cells, and may be regulated by GII interactions. Such changes in the cell surface carbohydrate on CD45 may affect the development of thymocytes, perhaps via binding of CD45 on thymocytes to lectins on stromal cells.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.167.7.3829