Mycobacterial antigens attenuate late phase response, airway hyperresponsiveness, and bronchoalveolar lavage eosinophilia in a mouse model of bronchial asthma

Allergens, in combination with genetic predisposition, drive undifferentiated T cells towards the type 2 T cells. Some childhood infections may activate the production of a type 1 T cell profile. It is reasonable to speculate that a decrease in childhood infections may increase the incidence of alle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International immunopharmacology 2001-09, Vol.1 (9), p.1743-1751
Hauptverfasser: Hopfenspirger, Michael T., Parr, Sharidan K., Hopp, Russell J., Townley, Robert G., Agrawal, Devendra K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Allergens, in combination with genetic predisposition, drive undifferentiated T cells towards the type 2 T cells. Some childhood infections may activate the production of a type 1 T cell profile. It is reasonable to speculate that a decrease in childhood infections may increase the incidence of allergy by allowing the immune balance to shift towards the type 2 T cells. We hypothesized that pre-exposure of mycobacterial antigens in sensitized mice would prevent the development of asthma-like conditions. Specifically, we examined the effect of mycobacterial antigens, Bacillus Calmette–Guérin (BCG) vaccine and Mycobacterium vaccae, on antigen-induced bronchoconstriction, airway hyperresponsiveness to methacholine, bronchoalveolar lavage eosinophilia, and plasma IL-4 and IL-12 levels in ovalbumin (OVA)-sensitized and challenged Balb/c mice. Challenge with OVA produced a 2–3-fold increase in bronchoconstriction within 3–5 min, followed by a delayed response after 60 min, the latter of which was significantly attenuated by both BCG and M. vaccae. Airway hyperresponsiveness to methacholine 24 h after OVA challenge was prevented by BCG and M. vaccae. Airway eosinophilia was also prevented by BCG and M. vaccae. The plasma IL-12 levels were significantly increased and plasma IL-4 levels were significantly decreased following BCG or M. vaccae administration in OVA-sensitized and challenged mice. Interestingly, a significant increase in plasma IL-12 was observed with BCG as compared to M. vaccae administration, suggesting a stronger type 1 response to BCG. These data support our hypothesis and suggest that BCG and M. vaccae may prevent the underlying pathophysiological changes in asthma.
ISSN:1567-5769
1878-1705
DOI:10.1016/S1567-5769(01)00084-4