Deletion of 6q16-q21 in human lymphoid malignancies: a mapping and deletion analysis
Two distinct regions of minimal deletion (RMD) have been identified at 6q25-q27 in non-Hodgkin's lymphoma (RMD-1), and at 6q21-q23 in acute lymphoblastic leukemia (ALL; RMD-2) by loss of heterozygosity and fluorescence in situ hybridization studies. In this study, 30 overlapping yeast artificia...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2000-06, Vol.60 (11), p.2775-2779 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two distinct regions of minimal deletion (RMD) have been identified at 6q25-q27 in non-Hodgkin's lymphoma (RMD-1), and at 6q21-q23 in acute lymphoblastic leukemia (ALL; RMD-2) by loss of heterozygosity and fluorescence in situ hybridization studies. In this study, 30 overlapping yeast artificial chromosomes (YACs), 1 expressed sequence tag, and 11 novel YAC ends were identified using bidirectional YAC walks between markers D6S447 (proximal) and D6S246 (distal) in RMD-2. The genes AF6q21, human homologue of the Drosophila tailless (HTLX), CD24 antigen, the Kruppel-like zinc finger BLIMP1, and cyclin C (CCNC), previously mapped to 6q21, were accurately positioned in a telomere-to-centromere orientation. Approximately 3.5 Mb were found to separate the BLIMP1 (adjacent to D6S447) and AF6q21 genes (telomeric to D6S246). Deletions of 6q were investigated in 21 cases of ALL using the newly characterized YAC clones in dual-color fluorescence in situ hybridization studies. A region centromeric to D6S447 (containing marker D6S283) and a region telomeric to marker CHLC.GGAT16CO2 (and containing marker D6S268) were identified as distinct and nonoverlapping regions of deletion in ALL. |
---|---|
ISSN: | 0008-5472 |