Negative Regulation of Neuroblastoma Cell Growth by Carbohydrate-dependent Surface Binding of Galectin-1 and Functional Divergence from Galectin-3
The cell density-dependent growth inhibition of human SK-N-MC neuroblastoma cells is initiated by increased ganglioside sialidase activity leading to elevated cell surface presentation of ganglioside GM1, a ligand of galectin-1. We herein show that the extent of the cell surface expression of the ga...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2001-09, Vol.276 (38), p.35917-35923 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cell density-dependent growth inhibition of human SK-N-MC neuroblastoma cells is initiated by increased ganglioside sialidase activity leading to elevated cell surface presentation of ganglioside GM1, a ligand of galectin-1. We herein show that the extent of the cell surface expression of the galectin coincides with marked increases of the sialidase activity. Reverse transcriptase-polymerase chain reaction analysis excludes a regulation at the transcriptional level. Exposure of cells to purified galectin-1 reveals its carbohydrate-dependent activity to reduce cell proliferation. Assays to detect DNA fragmentation biochemically and cytometrically and to block caspases render it unlikely that galectin-1 acts as a classical proapoptotic factor on these cells. Because the chimeric galectin-3 shares binding sites and binding parameters with galectin-1 for these cells, we tested whether this galectin will elicit the same response as the homodimeric cross-linking galectin-1. Evidently, galectin-3 fails to affect cell growth by itself but interferes with galectin-1 upon coincubation. Its proteolytically truncated variant, the C-terminal lectin domain with impaired capacity to form aggregates when surface bound, has only weak binding properties. Thus, the way in which the galectin-1 interacts topologically with an apparently common set of ligands relative to galectin-3 is crucial for eliciting post-binding events. We conclude that galectin-1 is a probable effector in the sialidase-dependent growth control in this system. Moreover, the experiments with galectin-3 reveal functional divergence, most probably based on different topologies of presentation of homologous carbohydrate-binding sites. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M105135200 |