TANK2, a New TRF1-associated Poly(ADP-ribose) Polymerase, Causes Rapid Induction of Cell Death upon Overexpression

Tankyrase (TANK1) is a human telomere-associated poly(ADP-ribose) polymerase (PARP) that binds the telomere-binding protein TRF1 and increases telomere length when overexpressed. Here we report characterization of a second human tankyrase, tankyrase 2 (TANK2), which can also interact with TRF1 but h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2001-09, Vol.276 (38), p.35891-35899
Hauptverfasser: Kaminker, Patrick G., Kim, Sahn-Ho, Taylor, Rebecca D., Zebarjadian, Yeganeh, Funk, Walter D., Morin, Gregg B., Yaswen, Paul, Campisi, Judith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tankyrase (TANK1) is a human telomere-associated poly(ADP-ribose) polymerase (PARP) that binds the telomere-binding protein TRF1 and increases telomere length when overexpressed. Here we report characterization of a second human tankyrase, tankyrase 2 (TANK2), which can also interact with TRF1 but has properties distinct from those of TANK1. TANK2 is encoded by a 66-kilobase pair gene (TNKS2) containing 28 exons, which express a 6.7-kilobase pair mRNA and a 1166-amino acid protein. The protein shares 85% amino acid identity with TANK1 in the ankyrin repeat, sterile α-motif, and PARP catalytic domains but has a unique N-terminal domain, which is conserved in the murine TNKS2 gene. TANK2 interacted with TRF1 in yeast and in vitro and localized predominantly to a perinuclear region, similar to the properties of TANK1. In contrast to TANK1, however, TANK2 caused rapid cell death when highly overexpressed. TANK2-induced death featured loss of mitochondrial membrane potential, but not PARP1 cleavage, suggesting that TANK2 kills cells by necrosis. The cell death was prevented by the PARP inhibitor 3-aminobenzamide. In vivo, TANK2 may differ from TANK1 in its intrinsic or regulated PARP activity or its substrate specificity.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M105968200