The cytoplasmic amino-terminus of the Latent Membrane Protein-1 of Epstein-Barr Virus : relationship between transmembrane orientation and effector functions of the carboxy-terminus and transmembrane domain

The Latent Membrane Protein 1 (LMP-1) protein of Epstein-Barr virus (EBV) is localized in the plasma membrane of the infected cell. LMP-1 possesses a hydrophobic membrane spanning domain, and charged, intracellular amino- and carboxy-termini. Two models have been proposed for the contribution of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2001-08, Vol.20 (38), p.5313-5330
Hauptverfasser: COFFIN, William F, ERICKSON, Kimberly D, HOEDT-MILLER, Marloes, MARTIN, Jennifer M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Latent Membrane Protein 1 (LMP-1) protein of Epstein-Barr virus (EBV) is localized in the plasma membrane of the infected cell. LMP-1 possesses a hydrophobic membrane spanning domain, and charged, intracellular amino- and carboxy-termini. Two models have been proposed for the contribution of the amino-terminus to LMP-1's function: (i) as an effector domain, interacting with cellular proteins, or (ii) as a structural domain dictating the correct orientation of transmembrane domains and thereby positioning LMP-1's critical effector domains (i.e. the carboxy-terminus). However, no studies to date have addressed directly the structural contributions of LMP-1's cytoplasmic amino-terminus to function. This study was designed to determine if LMP-1's cytoplasmic amino-terminus (N-terminus) encodes information required solely for maintenance of proper topological orientation. We have constructed LMP-1 chimeras in which the cytoplasmic N-terminus of LMP-1 is replaced with an unrelated domain of similar size and charge, but of different primary sequence. Retention of the charged amino-terminal (N-terminal) cytoplasmic domain and first predicted transmembrane domain was required for correct transmembrane topology. The absolute primary sequence of the cytoplasmic N-terminus was not critical for LMP-1's cytoskeletal association, turnover, plasma membrane patching, oligomerization, Tumor Necrosis Factor Receptor-associated factor (TRAF) binding, NF-kappaB activation, rodent cell transformation and cytostatic activity. Furthermore, our results point to the hydrophobic transmembrane domain, independent of the cytoplasmic domains, as the primary LMP-1 domain mediating oligomerization, patching and cytoskeletal association. The cytoplasmic amino-terminus provides the structural information whereby proper transmembrane orientation is achieved.
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1204689