The murine chemokine CXCL11 (IFN-inducible T cell alpha chemoattractant) is an IFN-gamma- and lipopolysaccharide-inducible glucocorticoid-attenuated response gene expressed in lung and other tissues during endotoxemia
A new murine chemokine was identified in a search for glucocorticoid-attenuated response genes induced in the lung during endotoxemia. The first 73 residues of the predicted mature peptide are 71% identical and 93% similar to human CXCL11/IFN-inducible T cell alpha chemoattractant (I-TAC) (alias bet...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2000-06, Vol.164 (12), p.6322-6331 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new murine chemokine was identified in a search for glucocorticoid-attenuated response genes induced in the lung during endotoxemia. The first 73 residues of the predicted mature peptide are 71% identical and 93% similar to human CXCL11/IFN-inducible T cell alpha chemoattractant (I-TAC) (alias beta-R1, H174, IFN-inducible protein 9 (IP-9), and SCYB9B). The murine chemokine has six additional residues at the carboxyl terminus not present in human I-TAC. Identification of this cDNA as murine CXCL11/I-TAC is supported by phylogenetic analysis and by radiation hybrid mapping of murine I-TAC (gene symbol Scyb11) to mouse chromosome 5 close to the genes for monokine induced by IFN-gamma (MIG) and IP10. Murine I-TAC mRNA is induced in RAW 264.7 macrophages by IFN-gamma or LPS and is weakly induced by IFN-alphabeta. IFN-gamma induction of murine I-TAC is markedly enhanced by costimulation with LPS or IL-1beta in RAW cells and by TNF-alpha in both RAW cells and Swiss 3T3 fibroblasts. Murine I-TAC is induced in multiple tissues during endoxemia, with strongest expression in lung, heart, small intestine, and kidney, a pattern of tissue expression different from those of MIG and IP10. Peak expression of I-TAC message is delayed compared with IP10, both in lung after i.v. LPS and in RAW 264.7 cells treated with LPS or with IFN-gamma. Pretreatment with dexamethasone strongly attenuates both IFN-gamma-induced I-TAC expression in RAW cells and endotoxemia-induced I-TAC expression in lung and small intestine. The structural and regulatory similarities of murine and human I-TAC suggest that mouse models will be useful for investigating the role of this chemokine in human biology and disease. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.164.12.6322 |