Keratinocyte-Melanocyte Interactions During Melanosome Transfer

The epidermal–melanin unit is composed of one melanocyte and approximately 36 neighboring keratinocytes, working in synchrony to produce and distribute melanin. Melanin is synthesized in melanosomes, transferred to the dendrite tips, and translocated into keratinocytes, forming caps over the keratin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pigment cell research 2001-08, Vol.14 (4), p.236-242
1. Verfasser: Seiberg, Miri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The epidermal–melanin unit is composed of one melanocyte and approximately 36 neighboring keratinocytes, working in synchrony to produce and distribute melanin. Melanin is synthesized in melanosomes, transferred to the dendrite tips, and translocated into keratinocytes, forming caps over the keratinocyte nuclei. The molecular and cellular mechanisms involved in melanosome transfer and the keratinocyte–melanocyte interactions required for this process are not yet completely understood. Suggested mechanisms of melanosome transfer include melanosome release and endocytosis, direct inoculation (‘injection’), keratinocyte–melanocyte membrane fusion, and phagocytosis. Studies of the keratinocyte receptor protease‐activated receptor‐2 (PAR‐2) support the phagocytosis theory. PAR‐2 controls melanosome ingestion and phagocytosis by keratinocytes and exerts a regulatory role in skin pigmentation. Modulation of PAR‐2 activity can enhance or decrease melanosome transfer and affects pigmentation only when there is keratinocyte–melanocyte contact. Moreover, PAR‐2 is induced by UV irradiation and inhibition of PAR‐2 activation results in the prevention of UVB‐induced tanning. The role of PAR‐2 in mediating UV‐induced responses remains to be elucidated.
ISSN:0893-5785
1600-0749
DOI:10.1034/j.1600-0749.2001.140402.x