Analytical Computation of the Eigenvalues and Eigenvectors in DT-MRI
In this paper a noniterative algorithm to be used for the analytical determination of the sorted eigenvalues and corresponding orthonormalized eigenvectors obtained by diffusion tensor magnetic resonance imaging (DT-MRI) is described. The algorithm uses the three invariants of the raw water spin sel...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance (1997) 2001-09, Vol.152 (1), p.41-47 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper a noniterative algorithm to be used for the analytical determination of the sorted eigenvalues and corresponding orthonormalized eigenvectors obtained by diffusion tensor magnetic resonance imaging (DT-MRI) is described. The algorithm uses the three invariants of the raw water spin self-diffusion tensor represented by a 3×3 positive definite matrix and certain math functions that do not require iteration. The implementation requires a positive definite mask to preserve the physical meaning of the eigenvalues. This algorithm can increase the speed of eigenvalue/eigenvector calculations by a factor of 5–40 over standard iterative Jacobi or singular-value decomposition techniques. This approach may accelerate the computation of eigenvalues, eigenvalue-dependent metrics, and eigenvectors especially when having high-resolution measurements with large numbers of slices and large fields of view. |
---|---|
ISSN: | 1090-7807 1096-0856 |
DOI: | 10.1006/jmre.2001.2400 |