Analytical Computation of the Eigenvalues and Eigenvectors in DT-MRI

In this paper a noniterative algorithm to be used for the analytical determination of the sorted eigenvalues and corresponding orthonormalized eigenvectors obtained by diffusion tensor magnetic resonance imaging (DT-MRI) is described. The algorithm uses the three invariants of the raw water spin sel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance (1997) 2001-09, Vol.152 (1), p.41-47
Hauptverfasser: Hasan, Khader M., Basser, Peter J., Parker, Dennis L., Alexander, Andrew L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper a noniterative algorithm to be used for the analytical determination of the sorted eigenvalues and corresponding orthonormalized eigenvectors obtained by diffusion tensor magnetic resonance imaging (DT-MRI) is described. The algorithm uses the three invariants of the raw water spin self-diffusion tensor represented by a 3×3 positive definite matrix and certain math functions that do not require iteration. The implementation requires a positive definite mask to preserve the physical meaning of the eigenvalues. This algorithm can increase the speed of eigenvalue/eigenvector calculations by a factor of 5–40 over standard iterative Jacobi or singular-value decomposition techniques. This approach may accelerate the computation of eigenvalues, eigenvalue-dependent metrics, and eigenvectors especially when having high-resolution measurements with large numbers of slices and large fields of view.
ISSN:1090-7807
1096-0856
DOI:10.1006/jmre.2001.2400