Quasi-Equilibrium Theory for the Distribution of Rare Alleles in a Subdivided Population: Justification and Implications

This paper examines a quasi-equilibrium theory of rare alleles for subdivided populations that follow an island-model version of the Wright–Fisher model of evolution. All mutations are assumed to create new alleles. We present four results: (1) conditions for the theory to apply are formally establi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical population biology 2000-05, Vol.57 (3), p.297-306
1. Verfasser: Burr, Tom L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper examines a quasi-equilibrium theory of rare alleles for subdivided populations that follow an island-model version of the Wright–Fisher model of evolution. All mutations are assumed to create new alleles. We present four results: (1) conditions for the theory to apply are formally established using properties of the moments of the binomial distribution; (2) approximations currently in the literature can be replaced with exact results that are in better agreement with our simulations; (3) a modified maximum likelihood estimator of migration rate exhibits the same good performance on island-model data or on data simulated from the multinomial mixed with the Dirichlet distribution, and (4) a connection between the rare-allele method and the Ewens Sampling Formula for the infinite-allele mutation model is made. This introduces a new and simpler proof for the expected number of alleles implied by the Ewens Sampling Formula.
ISSN:0040-5809
1096-0325
DOI:10.1006/tpbi.2000.1453