The growth suppressor p27(Kip1) protects against diet-induced atherosclerosis

The molecular basis of atherosclerosis is associated with excessive proliferation of vascular cells. Previous studies have suggested an inverse correlation between the expression of the growth suppressor p27(Kip1) (p27) and cellular proliferation within human atherosclerotic tissue. However, no caus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FASEB journal 2001-09, Vol.15 (11), p.1989-1995
Hauptverfasser: Díez-Juan, A, Andrés, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The molecular basis of atherosclerosis is associated with excessive proliferation of vascular cells. Previous studies have suggested an inverse correlation between the expression of the growth suppressor p27(Kip1) (p27) and cellular proliferation within human atherosclerotic tissue. However, no causal link between diminished p27 expression and atherogenesis has been established. We investigated the effect of p27 inactivation on diet-induced atherogenesis. We find that p27-deficient mice challenged with a high-fat diet for 1 month remain normocholesterolemic and have essentially no visible atheromas. However, when generated in an apolipoprotein E-null genetic background that leads to severe hypercholesterolemia in response to the atherogenic diet, deletion of p27 enhances arterial cell proliferation (approximately fourfold) and accelerates atherogenesis (approximately sixfold) compared with apolipoprotein E-deficient mice with an intact p27 gene. Analysis of apolipoprotein E-null mice bearing only one p27 allele inactivated reveals that a moderate decrease in p27 protein expression in the setting of hypercholesterolemia is sufficient to predispose to atherogenesis. Thus, our study establishes a molecular link between decreased p27 protein expression and atherogenesis in hypercholesterolemic animals.
ISSN:0892-6638
DOI:10.1096/fj.01-0130com