B Cell Responses to a Peptide Epitope. X. Epitope Selection in a Primary Response Is Thermodynamically Regulated

We examine the etiological basis of hierarchical immunodominance of B cell epitopes on a multideterminant Ag. A model T-dependent immunogen, containing a single immunodominant B cell epitope, was used. The primary IgM response to this peptide included Abs directed against diverse determinants presen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2000-06, Vol.164 (11), p.5615-5625
Hauptverfasser: Nakra, Pooja, Manivel, Venkatasamy, Vishwakarma, Ram A, Rao, Kanury V. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine the etiological basis of hierarchical immunodominance of B cell epitopes on a multideterminant Ag. A model T-dependent immunogen, containing a single immunodominant B cell epitope, was used. The primary IgM response to this peptide included Abs directed against diverse determinants presented by the peptide. Interestingly, affinity of individual monomeric IgM Abs segregated around epitope recognized and was independent of their clonal origins. Furthermore, affinity of Abs directed against the immunodominant epitope were markedly higher than that of the alternate specificities. These studies suggested that the affinity of an epitope-specific primary response, and variations therein, may be determined by the chemical composition of epitope. This inference was supported by thermodynamic analyses of monomer IgM binding to Ag, which revealed that this interaction occurs at the expense of unfavorable entropy changes. Permissible binding required compensation by net enthalpic changes. Finally, the correlation between chemical composition of an epitope, the resultant affinity of the early primary humoral response, and its eventual influence on relative immunogenicity could be experimentally verified. This was achieved by examining the effect of various amino-terminal substitutions on immunogenicity of a, hitherto cryptic, amino-terminal determinant. Such experiments permitted delineation of a hierarchy of individual amino acid residues based on their influence; which correlated well with calculated Gibbs-free energy changes that individual residue side chains were expected to contribute in a binding interaction. Thus, maturation of a T-dependent humoral response is initiated by a step that is under thermodynamic control.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.164.11.5615