Regulation of central neuron synaptic targeting by the Drosophila POU protein, Acj6

Mutations in the Drosophila class IV POU domain gene, abnormal chemosensory jump 6 (acj6), have previously been shown to cause physiological deficits in odor sensitivity. However, loss of Acj6 function also has a severe detrimental effect upon coordinated larval and adult movement that cannot be exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2000-06, Vol.127 (11), p.2395-2405
Hauptverfasser: Certel, S J, Clyne, P J, Carlson, J R, Johnson, W A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mutations in the Drosophila class IV POU domain gene, abnormal chemosensory jump 6 (acj6), have previously been shown to cause physiological deficits in odor sensitivity. However, loss of Acj6 function also has a severe detrimental effect upon coordinated larval and adult movement that cannot be explained by the simple loss in odorant detection. In addition to olfactory sensory neurons, Acj6 is expressed in a distinct subset of postmitotic interneurons in the central nervous system from late embryonic to adult stages. In the larval and adult brain, Acj6 is highly expressed in central brain, optic and antennal lobe neurons. Loss of Acj6 function in larval optic lobe neurons results in disorganized retinal axon targeting and synapse selection. Furthermore, the lamina neurons themselves exhibit disorganized synaptic arbors in the medulla of acj6 mutant pupal brains, suggesting that Acj6 may play a role in regulating synaptic connections or structure. To further test this hypothesis, we misexpressed two Acj6 isoforms in motor neurons where they are not normally found. The two Acj6 isoforms are produced from alternatively spliced acj6 transcripts, resulting in significant structural differences in the amino-terminal POU IV box. Acj6 misexpression caused marked alterations at the neuromuscular junction, with contrasting effects upon nerve terminal branching and synapse formation associated with specific Acj6 isoforms. Our results suggest that the class IV POU domain factor, Acj6, may play an important role in regulating synaptic target selection by central neurons and that the amino-terminal POU IV box is important for regulation of Acj6 activity.
ISSN:0950-1991
1477-9129
DOI:10.1242/dev.127.11.2395