Self-organization, Scale and Stability in a Spatial Predator–Prey Interaction
Simple predator–prey models often predict extreme instability in interactions where the prey are depressed well below their carrying capacity. Although the behaviour of some laboratory systems conforms to this pattern, field and mesocosm studies generally show prolonged co-existence of prey and pred...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2000-01, Vol.62 (1), p.61-86 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Simple predator–prey models often predict extreme instability in interactions where the prey are depressed well below their carrying capacity. Although the behaviour of some laboratory systems conforms to this pattern, field and mesocosm studies generally show prolonged co-existence of prey and predator. Prominent among the possible causes of this discrepancy are the effects of spatial heterogeneity. In this paper we show that both discrete and continuous representations of the spatial Rosenzweig–McArthur model with immobile prey can be stabilized by self-organized prey heterogeneity. This concordance of behaviour closely parallels that which we have previously established in the context of invasion waves. We use the continuous model variant to calculate the characteristic spatial scales of the self-organized structures. The discrete variant forms the basis of a simulation study demonstrating the variety of stable structures and elucidating their relation to the history of the system. We note that all stable prey distributions take the form of a network of occupied patches separated by prey-free regions, and liken the process which generates such assemblages to the formation of a landscape mozaic. |
---|---|
ISSN: | 0092-8240 1522-9602 |
DOI: | 10.1006/bulm.1999.0130 |