E1A modulates phosphorylation of p130 and p107 by differentially regulating the activity of G1/S cyclin/CDK complexes

We have previously shown that the adenoviral 12S E1A protein modulates the phosphorylation status of p130 and p107 without apparent changes in the cell cycle dependent phosphorylation of the retinoblastoma protein. Here we report on the mechanisms by which E1A modifies differentially the phosphoryla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2001-08, Vol.20 (35), p.4793-4806
Hauptverfasser: PARRENO, Matilde, GARRIGA, Judit, LIMON, Ana, ALBRECHT, Jeffrey H, GRANA, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have previously shown that the adenoviral 12S E1A protein modulates the phosphorylation status of p130 and p107 without apparent changes in the cell cycle dependent phosphorylation of the retinoblastoma protein. Here we report on the mechanisms by which E1A modifies differentially the phosphorylation status of pocket proteins. In human U-2 OS osteosarcoma cells transiently expressing E1A, ectopic expression of D-type cyclins alone or combined, but not cyclins E and/or A, fully rescues E1A-mediated block in hyperphosphorylation of p130 to form 3. However, cyclins E and A, individually or together, induce hyperphosphorylation of p130 to species with intermediate mobility. Phosphopeptide maps indicate that E1A inhibits phosphorylation of sites phosphorylatable by CDKs. One of these sites is Ser-1044. The effects of blocking the activities of endogenous and exogenous cyclins with p16 and dominant negative CDK2 in E1A expressing cells further indicate that p130 is phosphorylated by both D-type cyclin and cyclin E/CDK complexes and that E1A modulates the activity of these G1/S CDKs by independent mechanisms. Stable expression of E1A in MC3T3-E1 cells leads to downregulation of D-type cyclins, and upregulation of cyclins E and A. This is accompanied by increased CDK2 kinase activity. Downregulation of D-type cyclins in these cells correlates with a block on both p130 hyperphosphorylation to form 3 and hyperphosphorylation of p107. This is rescued by D-type cyclins but not by cyclin E. In addition, we show that the upregulation of cyclins E and A is at least partially dependent on an intact pocket protein/E2F pathway, but downregulation of D-type cyclins is not. Moreover, we provide evidence that while the lack of a functional pRB pathway also results in a block on hyperphosphorylation of p130 to form 3, this is not sufficient to induce constitutive expression of p130 form 2b.
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1204644