Auditory nerve fiber differences in the normal and neurofilament deficient Japanese quail
A primary axonal disease affecting the central and peripheral nervous system was discovered in a mutant strain of the Japanese quail, named quiver (Quv). We have previously demonstrated altered auditory evoked potentials in the neurofilament (NF) deficient quail. In this current study we attempt to...
Gespeichert in:
Veröffentlicht in: | Hearing research 2001-09, Vol.159 (1), p.117-124 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A primary axonal disease affecting the central and peripheral nervous system was discovered in a mutant strain of the Japanese quail, named quiver (Quv). We have previously demonstrated altered auditory evoked potentials in the neurofilament (NF) deficient quail. In this current study we attempt to find relationships between the auditory evoked potential results and the histo-pathological abnormalities of the auditory neurons. No abnormalities in the external auditory meatus and tympanic cavity were observed in either Quv or control quails and the ganglion cell bodies and their nuclei appeared normal by light microscopy. The myelin staining pattern was found to be similar in both strains with hematoxylin and eosin and Klüver–Barrera staining. The frequency histograms of fiber and axonal diameters of myelinated fibers showed an unimodal pattern in both strains. In Quv quails myelinated fibers and their axoplasm were smaller in diameter than in controls resulting in smaller neural tissue mass. In electron microscopic observation the axons of the Quv quail were composed of mitochondria and microtubules and smooth endoplasmic reticuli. In Quv quail electron micrographs of cochlear nerve myelinated fibers NFs were not seen in the axons and the neuronal cell bodies. Our current findings indicate that the previously reported reduction of conduction velocity of auditory evoked potentials may be due to smaller fiber and/or axonal diameter. The
g-ratio, myelin thickness and fiber circularity were found to be the same for both strains. In conclusion, loss of axonal cytoskeletal elements (NFs) correlates well with our electrophysiological findings. Reduced conduction velocity and severely distorted auditory evoked potentials in NF deficient quails seem to be primarily due to axonal hypotrophy. |
---|---|
ISSN: | 0378-5955 1878-5891 |
DOI: | 10.1016/S0378-5955(01)00326-4 |