A multiple imputation strategy for incomplete longitudinal data
Longitudinal studies are commonly used to study processes of change. Because data are collected over time, missing data are pervasive in longitudinal studies, and complete ascertainment of all variables is rare. In this paper a new imputation strategy for completing longitudinal data sets is propose...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2001-09, Vol.20 (17-18), p.2741-2760 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Longitudinal studies are commonly used to study processes of change. Because data are collected over time, missing data are pervasive in longitudinal studies, and complete ascertainment of all variables is rare. In this paper a new imputation strategy for completing longitudinal data sets is proposed. The proposed methodology makes use of shrinkage estimators for pooling information across geographic entities, and of model averaging for pooling predictions across different statistical models. Bayes factors are used to compute weights (probabilities) for a set of models considered to be reasonable for at least some of the units for which imputations must be produced, imputations are produced by draws from the predictive distributions of the missing data, and multiple imputations are used to better reflect selected sources of uncertainty in the imputation process. The imputation strategy is developed within the context of an application to completing incomplete longitudinal variables in the so‐called Area Resource File. The proposed procedure is compared with several other imputation procedures in terms of inferences derived with the imputations, and the proposed methodology is demonstrated to provide valid estimates of model parameters when the completed data are analysed. Extensions to other missing data problems in longitudinal studies are straightforward so long as the missing data mechanism can be assumed to be ignorable. Copyright © 2001 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0277-6715 1097-0258 |
DOI: | 10.1002/sim.740 |