Mares with Delayed Uterine Clearance Have an Intrinsic Defect in Myometrial Function

Persistent, postmating endometritis affects approximately 15% of mares and results in reduced fertility and sizable economic losses to the horse-breeding industry. Mares that are susceptible to postmating endometritis have delayed uterine clearance associated with reduced uterine contractility. Unfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology of reproduction 2001-09, Vol.65 (3), p.740-747
Hauptverfasser: RIGBY, Sherri L, BARHOUMI, Rola, DELP, Michael D, BURGHARDT, Robert C, COLLERAN, Patrick, THOMPSON, James A, VARNER, Dickson D, BLANCHARD, Terry L, BRINSKO, Steven P, TAYLOR, Tex, WILKERSON, M. Keith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Persistent, postmating endometritis affects approximately 15% of mares and results in reduced fertility and sizable economic losses to the horse-breeding industry. Mares that are susceptible to postmating endometritis have delayed uterine clearance associated with reduced uterine contractility. Unfortunately, the mechanism for reduced uterine contractility remains an enigma. The present study examined the hypothesis that mares with delayed uterine clearance have an intrinsic contractile defect of the myometrium. Myometrial contractility was evaluated in vitro by measuring isometric tension generated by longitudinal and circular uterine muscle strips in response to KCl, oxytocin, and prostaglandin F 2α (PGF 2α ) for young nulliparous mares, older reproductively normal mares, and older mares with delayed uterine clearance. In addition, intracellular Ca 2+ regulation was evaluated using laser cytometry to measure oxytocin-stimulated intracellular Ca 2+ transients of myometrial cells loaded with a Ca 2+ -sensitive fluorescent dye, fluo-4. For all contractile agonists, myometrium from mares with delayed uterine clearance failed to generate as much tension as myometrium from older normal mares. Oxytocin-stimulated intracellular Ca 2+ transients were similar for myometrial cells from mares with delayed uterine clearance and from older normal mares, suggesting that the contractile defect did not result from altered regulation of intracellular Ca 2+ concentration. Furthermore, no apparent age-dependent decline was observed in myometrial contractility; KCl-depolarized and oxytocin-stimulated longitudinal myometrium from young normal mares and older normal mares generated similar responses. However, circular myometrium from young normal mares failed to generate as much tension as myometrium from older normal mares when stimulated with oxytocin or PGF 2α , suggesting possible age-related alterations in receptor-second messenger signaling mechanisms downstream of intracellular Ca 2+ release. In summary, for mares with delayed uterine clearance, an intrinsic contractile defect of the myometrium may contribute to reduced uterine contractility following breeding.
ISSN:0006-3363
1529-7268
DOI:10.1095/biolreprod65.3.740