Androgens induce expression of SPAK, a STE20/SPS1-related kinase, in LNCaP human prostate cancer cells

Genes that are regulated by androgens in the human prostate are believed to play an essential role in prostate physiology and they may also be involved in the proliferative response of prostate cancer cells to androgens. We used a cDNA subtraction approach to identify novel androgen-regulated transc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular endocrinology 2001-09, Vol.182 (2), p.181-192
Hauptverfasser: Qi, Heng, Labrie, Yvan, Grenier, Josée, Fournier, Andréa, Fillion, Catherine, Labrie, Claude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genes that are regulated by androgens in the human prostate are believed to play an essential role in prostate physiology and they may also be involved in the proliferative response of prostate cancer cells to androgens. We used a cDNA subtraction approach to identify novel androgen-regulated transcripts in LNCaP cells that were exposed to 0.1 nM R1881 for 24 h. We report here that SPAK, a recently identified STE20/SPS1-related kinase that modulates p38 MAP kinase activity, exhibited increased expression in androgen-treated LNCaP cells. Androgen regulation of SPAK was both dose- and time-dependent. R1881-induced SPAK expression was completely abrogated by the antiandrogen casodex and by actinomycin D indicating that androgen induction of SPAK requires the androgen receptor and transcription. Cycloheximide caused a partial inhibition of R1881-induced SPAK expression which suggests that androgen induction of SPAK expression may require synthesis of additional proteins. Northern blot and ribonuclease protection assays demonstrated that SPAK is expressed at high levels in normal human testes and prostate, as well as in a number of breast and prostate cancer cell lines. These results identify SPAK, a member of a key cell signalling pathway, as an androgen-responsive gene in LNCaP cells. We hypothesize that SPAK may mediate androgen action in the normal and cancerous prostate gland.
ISSN:0303-7207
1872-8057
DOI:10.1016/S0303-7207(01)00560-3