The cysteine residue of the SoxY protein as the active site of protein-bound sulfur oxidation of Paracoccus pantotrophus GB17
Four proteins of Paracoccus pantotrophus are required for hydrogen sulfide-, sulfur-, thiosulfate- and sulfite-dependent horse heart cytochrome c reduction. The lack of free intermediates suggested a protein-bound sulfur oxidation mechanism. The SoxY protein has a novel motif containing a cysteine r...
Gespeichert in:
Veröffentlicht in: | FEBS letters 2001-08, Vol.503 (2), p.168-172 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Four proteins of
Paracoccus pantotrophus are required for hydrogen sulfide-, sulfur-, thiosulfate- and sulfite-dependent horse heart cytochrome
c reduction. The lack of free intermediates suggested a protein-bound sulfur oxidation mechanism. The SoxY protein has a novel motif containing a cysteine residue. Electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry of the SoxYZ protein revealed one mass for SoxZ and different masses for SoxY, indicating native SoxY (10 977 Da) and SoxY with additional masses of +32, +80, +112 and +144 Da, suggesting addition of sulfur, sulfite, thiosulfate and thioperoxomonosulfate. Reduction of SoxY removed the additional masses, indicating a thioether or thioester bond.
N-Ethylmaleimide inhibited thiosulfate-oxidation and the kinetics suggested a turn-over-dependent mode of action. These data were evidence that the sulfur atom to be oxidized was covalently linked to the thiol moiety of the cysteine residue of SoxY and the active site of sulfur oxidation. |
---|---|
ISSN: | 0014-5793 1873-3468 |
DOI: | 10.1016/S0014-5793(01)02727-2 |