Hepatic Ischemia/Reperfusion Injury in P-Selectin and Intercellular Adhesion Molecule-1 Double-Mutant Mice
Neutrophil adhesion and recruitment represents one of the early cellular events that occur during hepatic ischemia/reperfusion (IR) injury and plays a critical role in determining the extent of tissue damage. The adhesion molecules, such as selectins and intercellular adhesion molecules (ICAM), are...
Gespeichert in:
Veröffentlicht in: | The American surgeon 2001-08, Vol.67 (8), p.737-744 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neutrophil adhesion and recruitment represents one of the early cellular events that occur during hepatic ischemia/reperfusion (IR) injury and plays a critical role in determining the extent of tissue damage. The adhesion molecules, such as selectins and intercellular adhesion molecules (ICAM), are important in mediating neutrophil-endothelial cell interactions and neutrophil emigration. The goal of this study was to evaluate the role of P-selectin and ICAM-1 in hepatic IR injury. Male wild-type and P-selectin/ICAM-1-deficient (P/I null) mice underwent 90 minutes of partial hepatic ischemia followed by reperfusion at various time points (0, 1.5, 3, and 6 hours). Reperfusion caused a time-dependent hepatocellular injury in both wild-type and P/I null mice as judged by plasma alanine aminotransferase (ALT) levels and liver histopathology examination. Although ALT levels were slightly lower in the P/I null mice compared with the wild-type mice the differences were not statistically significant. Neutrophil infiltration to the ischemic liver was observed in both mouse groups after 6 hours of reperfusion; however, the infiltration to the midzonal region of the ischemic liver was more pronounced in the wild-type group. This study suggests that hepatocellular injury induced after hepatic IR was independent of P-selectin and ICAM-1 in this model of acute inflammatory tissue injury. |
---|---|
ISSN: | 0003-1348 1555-9823 |
DOI: | 10.1177/000313480106700804 |